The role of acoustic and perceptual features in music perception

¹ Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany ² Center for Language, Music, and Emotion (CLaME), New York, United States

Background

- Long standing question: "What is music?"
- Previous findings: (Larrouy-Maestri & Wald-Fuhrmann, pre-registration) •
 - People identify sounds as music or not confidently.
 - The perception of music is slightly affected by - listeners' perspective (Exp. 1) - stimuli duration (Exp. 2)

This experiment

Role of <u>acoustic</u> features in *music* perception?

- Evidence FOR and AGAINST a music-acoustic mapping
- Numerous studies comparing speech and song (e.g., Albouy et al., 2024; Bruder et al., preprint; Chang et al., 2024; Ozaki et al., 2024)
- Speech-to-Song illusion (Deutsch et al., 2011 and many others)
- Music is extremely varied, within/between cultures, and over time (e.g., Titon, 2016)

- stimuli repetition (Exp. 3)
- BUT these effects are small.

Mean music answers (A, B, C, yes/no answers) and confidence ratings (D, E, ordinal scale: 0-3, from not at all to very confident) for each stimulus and each condition of the pre-registered experiments testing the effect of listeners perspective (Exp. 1), stimuli's duration (Exp. 2) and repetition (Exp. 3), on the participants (n = 637) identification of audio stimuli (n = 90, 75, 42,respectively). F illustrates listeners' consistency when identifying the 42 stimuli two times, estimated with Phi-coefficients between first and second presentations (i.e., Between Blocks, Within Blocks Random, Within Blocks Consecutive).

Role of <u>perceptual</u> features in *music* perception?

In the context of singing voices, perceptual features (vibrato, attack, brightness, etc.) predict listeners' preferences (Bruder et al., 2024)

Methods

Material: 90 stimuli from different sources (doi: 10.17617/3.19BJQ1)

Results

Stimuli

Ratings on the music slider (0-100) of the 90 stimuli by Western online participants (n = 98). Individual points represent the raw ratings and the curve is the fitted sig function of the average ratings.

Dendrogram representing the grouping similarity of the 90 stimuli. Small heights indicate greater similarity. Colors represent **clusters** (n = 3, according to the visual inspection of k-means cluster analysis).

(06-0) rating of anking

Participants

Moderate variability between participants (n = 98 columns). For each participant, stimuli are ranked from 1 to 90 and color-coded according to the cluster analysis performed at the group level.

- Take home messages

The perception of *music* is stable across conditions (with slight individual differences)

Music (n = 36) – Non music (n = 36) – Ambiguous (n = 18)

- M_apocalyptic_gui

5 - M_beats_experiment

32 - M_gonul_kal

33 - M_indian_vina

34 - M_jazzy_guitar1

35 - M_kiva_nariak

36 - M_latin_guita

7 - M_mariposa

9 - M meditatio

40 - M_miroloi

41 - M_mugan

42 - M_orienta

43 - M_phen_phi

4 - M_piano_noi 5 - M_swing

6 - M techno flu

47 - M_ungava_ba

8 - M_ungava_bay

9 - M_water_drun

4 - N_bird03

55 - N bodhran

7 - N_churchbells

0 - N coffee grinde

8 - N_cicads

9 - N_clock

8 - M_mawal_ma_r

62 - N_cow_bells

63 - N_crickets

64 - N_dishwas

65 - N_dundun6s

6 - N_dundun7

7 - N_fire_big

8 - N_frying

9 - N_gas_s

0 - N_glass_cl

6 - N_metal_stail

6 - N storm de

8 - N_wind_chime

0 - N wooden st

89 - N_wingflap

2 - M_asian_flute

4 - M_bahriyya

7 - M bells

8 - M_bilal

3 - M_asian_guitar

6 - M_beats_experi

9 - M_blues_guitar

10 - M blues guitar.

11 - M caballo blanc

12 - M_cana_verde

14 - M_drums_mara

13 - M_christmas

16 - M_dundun6n

18 - M electro strin

2 - M_experimental 23 - M experimental

25 - M experimental

26 - M_experimental 1

27 - M_experimental

29 - M_flamenco_guita

30 - M_ganza_knogo_ng

28 - M_faa_gani

7 - M_electro

Three clusters on the two-dimensional acoustic space. Loadings of the main features on the two dimensions are represented with arrows. Proportion of variance explained by the dimensions: $\mathbf{R}^2 = 26.5\%$

highlighting the

differences in mean ratings of features Instrumental, Melody are particularly relevant features, as confirmed by the model including all perceptual features as fixed effects.

- There are three categories: Music, not music, and ambiguous
- **Perceptual (but not acoustic)** features ground *music* perception

Contact plm@ae.mpg.de

Acknowledgement

Thanks to Adika Rahman, Madita Hörster, and R. Muralikrishnan for help with the stimuli selection of stimuli and part of online data collection.

References

dimensions: $\mathbf{R}^2 = 66.1\%$

Albouy et al. (2024). Nature Communications; Bogdanov et al. (2013). 14th International Society for MIR Conference; Bruder et al. (2024). Scientific Reports; Bruder et al. (under review); Deutsch et al. (2011). JASA; Chang et al. (2024). Plos Biology; Larrouy-Maestri & Wald-Fuhrmann (2022-2023). OSF: osf.io/sb24q, osf.io/azkcp, osf.io/re7dg; Ozaki et al. (2024). Science Advances; Titon (2016). Worlds of Music