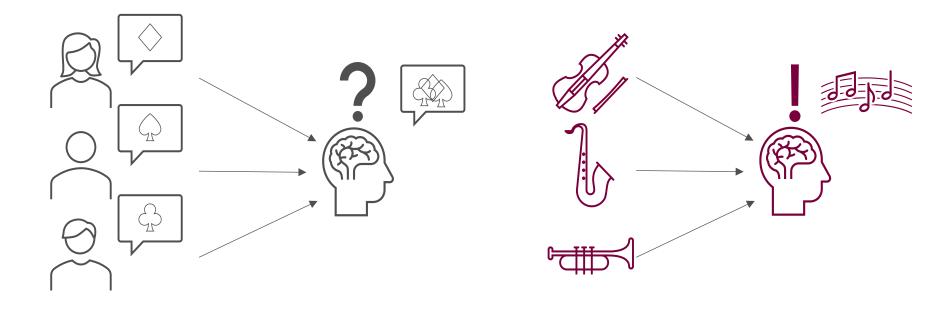
The effect of timbre proximity on auditory stream formation in polyphonic music: preliminary discussion on behavioral outcomes

Harris Miller¹, Shu Sakamoto^{1,2}, Emily Wood^{1,2}, Laurel Trainor^{1,2} contact: milleh11@mcmaster.ca

¹Department of Psychology, Neuroscience and Behavior, ²McMaster Institute of Music and the Mind, McMaster University, Hamilton, ON, Canada

Purpose


- 1. Study the effect of timbre on the ability to integrate or segregate sound streams
- 2. Verify the experimental paradigm for a future EEG study

Background

- Auditory Scene Analysis is a model for auditory perception (Bregman, 1990)
- Incoming sound sources form auditory streams, which then can be either integrated or segregated
 - Stream Segregation: Assignment of incoming sound sources to distinct perceptual objects
 - Stream Integration: Grouping of multiple sound sources into one object
- Whether streams are integrated or segregated depends on both bottomup (e.g. timbre) and top-down (e.g. attention) information

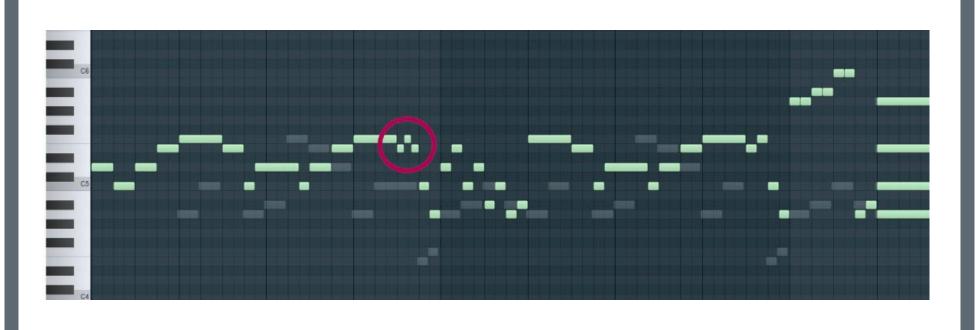
Objective

- Music can be both integrated and segregated, unlike speech
 - Many speakers at once → Unintelligible
 - Many instruments at once → Music!
- This makes music an ideal medium for studying stream formation, since we can investigate different states of top-down attention
- We can modify the physical features of stimuli (e.g. timbre) without making it sound unnatural
- Thus, we can study the interplay between bottom-up influences (e.g. timbre) and top-down influences (e.g. attention) on the stream formation process

Hypothesis

- H1: Increasing timbre distance will make integration more difficult
- H2: Increasing timbre distance will make segregation less difficult

Research Questions


- 1. How does timbre distance affect integration or segregation of sound streams in music?
- 2. Does our experimental paradigm accurately measure the effect?

Experiment

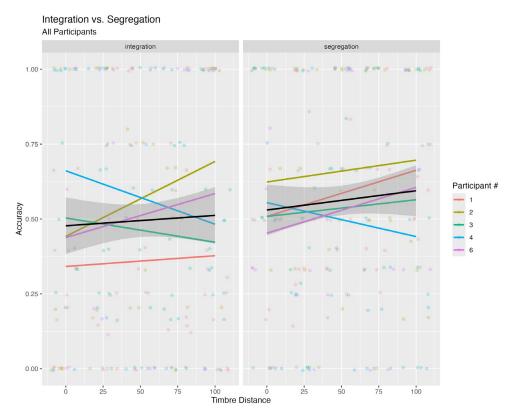
- Participants listened to pieces of music with two simultaneous instruments
- Participants were instructed to either attend to both instruments (integration trials) or one instrument (segregation trials)
- Participants detected a target sound from the attended instrument(s)
- Targets were either grace notes or triplets
- Participants responses were timestamped and recorded
- Participants completed 8 practice trials, and only completed experiment if 50% accuracy could be achieved

Stimuli

- Pieces were composed using FL Studio, a digital audio workspace
- Using Serum, a wavetable synthesizer, instrument timbres were morphed along a continuum of timbre distances (TD)
- TD ranged from 0–100, where two instruments had identical timbres at TD = 0 and most distinct at TD = 100
- Pieces were assigned with randomized target positions and tempos

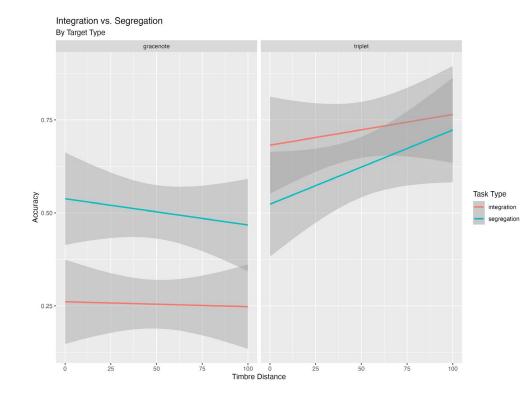
Analysis Methods

- Accuracy for each trial was calculated according to a confusion matrix
- Accuracy = (TP + TN) / (TP + TN + FP + FN)

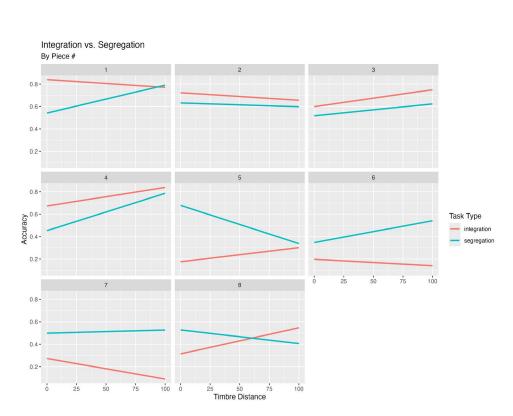

	Response (pressed space bar)	No Response (did not press space bar)
Target Present	True Positive (TP)	False Negative (FN)
Target Absent	False Positive (FP)	True Negative (TN)

- Responses were tagged as "Target Present" when participant input was within 2000ms of target appearance
- Accuracies were averaged across each degree of timbre morphing, and by trial type (integration or segregation)
- Accuracies were also measured based on target type (grace note or triplet) to see if target type affects accuracy

Results


Accuracy vs. Timbre Distance:

- Segregation trials became easier as timbre distance increased
- Integration trials were not affected in difficulty when timbre distance was changed


By Target Type:

- Triplet note task seems to have a higher accuracy overall
- Triplet note task followed the general trend of segregation, while grace note task did not

By Piece:

- Most pieces follow the general trend during the segregation task, i.e.) higher TD is associated with higher accuracy
- For pieces #5 and #8, further investigation is needed

Discussion

Current Works

- Current stimuli successfully modulates participant behavior on stream segregation via manipulation of timbre distance
- Timbre distance seems to not affect integration ability strongly
- Task type and piece # appears to effect results, though with low participant count this may not be significant

Future Directions

- Paradigm will be used for EEG study
- · Neural mechanisms behind stream formation will be examined
- How does timbre and attention affect stream formation?