Auditory-motor predictions after short motor training in non-musicians

Oscar Bedford¹, Alberto Ara¹, Jérémie Ginzburg^{1,2}, Philippe Albouy², Robert Zatorre¹, Virginia Penhune³

¹Montreal Neurological Institute, McGill University, Montréal, Canada

²CERVO research center, Laval University, Québec, Canada

³Department of Psychology, Concordia University, Montréal, Canada

Background

- Auditory-motor coupling: a bidirectional system crucial for speech and music^[1]
- Motor activity anticipates learned sound sequences in passive listening contexts^[2]
- Mu suppression (9-13Hz) over M1 anticipates learned melodies in musicians^[3]
- Mu suppression has not been found in non-musicians nor for single notes

Methods

• 24 non-musicians underwent motor training of a simple target melody:

Training was preceded and followed by 2 passive listening blocks:

- EEG data from the training part led to a time-frequency functional localizer:
 - (Pretone activity for correct keypresses Resting period)
- The resulting clusters were divided into 5 regions of interest (ROIs):

- Each ROI was used to mask the EEG data for the passive listening blocks
- A GLMM statistical approach was used to assess differences across blocks

Behavior

EEG results

Summary

- Participants learned the target melody and the tone-to-finger mapping
- The training data successfully localized mu suppression in passive listening
- Late mu ROI showed suppression in the post-training target listening block
- This effect was only present in Late mu, as originally hypothesized

Discussion

- Findings point to sequence-related anticipation, which is cognitively demanding^[4]
- Findings support the common-coding theory that forward models aid perception^[5]
- Effect cannot be occipital alpha^[6]: 1) fixation cross; 2) attentional distractor task
- Prior literature did not find the effect^[7], which indicates it may be short-lived

Future steps

- Base analysis on subjects instead of channels to explore brain-behavior effects
- Expand design to include the beta band, the other component of the mu complex
- Elucidate the precise role of training length and consolidation parameters
- Explore the relationship between musical training variables and mu suppression

References

- [1] Iversen, J. R., & Balasubramaniam, R. (2016). Synchronization and temporal processing. Current Opinion in Behavioral Sciences, 8, 175–180.
- [2] Stephan, M. A., Lega, C., & Penhune, V. B. (2018). Auditory prediction cues motor preparation in the absence of movements. *NeuroImage*, 174, 288–296.
- [3] Wu, C. C., Hamm, J. P., Lim, V. K., & Kirk, I. J. (2016). Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies. *Experimental Brain Research*, 234(8), 2133–2139.
- [4] Novembre, G., & Keller, P. E. (2014). A conceptual review on action-perception coupling in the musicians' brain: What is it good for? Frontiers in Human Neuroscience, 8, 603.
- [5] Halász, V., & Cunnington, R. (2012). Unconscious effects of action on perception. Brain Sciences, 2(2), 130–146.
- [6] Hobson, H. M., & Bishop, D. V. M. (2017). The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future.

 Royal Society Open Science, 4(3), 160662.
- [7] Wu, C. C., Hamm, J. P., Lim, V. K., & Kirk, I. J. (2017). Musical training increases functional connectivity, but does not enhance mu suppression. Neuropsychologia, 104, 223–233.

Acknowledgments

