

Cross-Species investigation of neural dynamics underlying musical rhythm in nonhuman primates

Karli M. Nave¹ & Jessica A. Grahn¹

¹ Department of Psychology, Centre for Brain and Mind; University of Western Ontario

BACKGROUND

- In humans, motor areas respond to auditory rhythmic sequences.
- Supplementary Motor Area (SMA) and basal ganglia respond more when sequences induce a beat.
- Behaviourally, non-human primates (NHP) appear insensitive to the beat, but evidence is limited.
- Neuroimaging could probe NHP motor responses to rhythm.
- If beat-specific brain responses are observed, this may indicate beat perception in NHP.

basal ganglia Motor responses to rhythm Grahn & Brett, 2007

Strong Beat > Non beat basal ganglia Grahn & Rowe, 2009

Research Question: How do marmoset brains respond to auditory Strong-, Weak-, and Non- Beat rhythms?

- Greater motor tor activity to rhythms vs acoustic noise → motor areas play a role in perceptual auditory sequence timing across species.
- Differences between beat and non-beat rhythms → NHP may be sensitive to the beat, despite lack of behavioural evidence.

METHODS

Sample: Data collection is <u>ongoing</u> ...

N = 7 common marmosets

- one session: n = 3 monkeys
- two sessions: n = 4 monkeys

Stimuli: Auditory Rhythms

9.4 T fMRI

Gradient strength: 1.5 mT/m/A Coil: 8-channel receive coil

Head-mounted

restraint system

→ Head secured using a head post → MRI-compatible auditory tubes

Dureux, Zanini, & Everling (2024)

Block Sparse-Sample Design

- TR (3s) is sparsely sampled: • 0 - 1.5s = scanner "ON"• 1.5s – 3s = scanner "OFF" Stimulus block = 12s (4 TRs)
- **Baseline** = 3s, 9s, or 15s

PRELIMINARY RESULTS

All Rhythms VS. Baseline

p < .001*

Strong Beat

VS

Scrambled

p < .001*

Strong Beat

VS.

Non/Weak Beat

 $p < .05^*$

Rhythms > Baseline

- TPO: temporo-parieto-occipital association area
- AuML: auditory cortex middle lateral area
- AuR: auditory cortex rostral
- CeB: cerebellum

Baseline > Rhythms

- Thal: thalamus
- SC: superior colliculus
- Cd: caudate
- V1: primary visual area

Strong Beat > Scrambled

• **A31**: area 31 of cortex

Scrambled > Strong Beat

- AuA1: primary auditory cortex
- AuCM: auditory cortex
- caudomedial area
- CeB: cerebellum
- **A11**: area 11
- V1: primary visual cortex
- MGN: medial geniculate nucleus
- Thal: thalamus

Strong > Non/Weak Beat

None

Non/Weak > Strong Beat

- A24b: area 24b of cortex
- Pu: putamen
- **V2 / V3**: visual area 2 / 3
- CeB: cerebellum
- Opt: occipito-parietal transitional area of cortex

LGN: lateral geniculate nucleus

simulations, cluster-forming threshold p < 0.01, and FWE correction at p < 0.05).

REFERENCES

- . Dureux, A., Zanini, A., & Everling, S. (2024). Mapping of facial and vocal processing in common marmosets with ultra-high field fMRI. Communications Biology, 7(1), 317, doi: 10.1038/s42003-024-06002-1.
- 2. Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the Journal of 893-906. cognitive 19(5), doi: brain. neuroscience, 10.1162/jocn.2007.19.5.893
- 3. Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29(23), 7540-7548, doi: 10.1523/JNEUROSCI.2018-08.2009.

DISCUSSION

Preliminary Findings:

- Auditory activation is greater for rhythms compared to silent intervals, suggesting the sparse-sampling method can be used to acquire auditory responses.
- Motor responses in baseline and non/weak-beat rhythms, counter to predictions. Need to examine behaviour during the different rhythm types.

Future Steps

- Data checks
- Region of interest analyses on motor areas, in addition to auditory areas.
- Functional connectivity analyses between auditory and motor areas.

