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Background

Results

Model Conclusion

 Evidence from fMRI[1], PET scan[2], and Parkinson’s[3,4] indicate that basal ganglia (BG) and its 
dopamine are important to maintaining a steady finger-tapping tempo.

 The BG are composed of segregated, parallel, and recurrent cortico-striatal loops[5,6], with 
striatal neurons prominently modulated by dopamine (Fig 1).

 According to the classic model, exciting a striatal population disinhibits a corresponding action-
related cortical population, activating that action.[5]

 A loop may encode an entire action sequence and its continuous movement parameters (e.g., 
speed).[7,8,9]

 Dopaminergic modulation of striatum is thought to respond to reward prediction errors and 
possibly sensory prediction errors.[10]
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In our model of metronome-synchronized finger tapping…
 A continuum of overlapping cortico-striatal loops 

produce tapping at a continuum of possible tempi.
 Tapping tempo is adjusted when inter-click interval 

measurements provide input to a new set of loops.
 Dopamine strengthens a positive feedback loop that 

“locks in” a tempo, making it resist change and drift.
 Greater tap/click asynchronies reduce dopamine.

 We model each basal ganglia subregion as a collection of 
300 firing-rate units (adapted from [6]).

 Measurements of durations between metronome clicks 
provide cortical input to a subset of these loops. 

 Loops overlap due to spreading cortico-striatal connections.
 Taps are executed at intervals determined by thalamic 

activation, with (unmodeled) phase correction of asynchrony.
 Dopamine positively and negatively modulates striatal D1 

and D2 layers, respectively.
This model reproduces two key results:

1. We adapt to large metronome tempo changes more 
immediately than smaller ones.[11]

2. Parkinsonian patients tap with greater variability 
during synchronization and continuation.[3,4]

Small tempo adjustments (500 ms to 510 ms) occur gradually.

Reduced dopamine increases tapping variability.

Figure 3: Inter-tap intervals become more variable as dopamine 
levels drop, as observed in Parkinson’s.[3,4]

 We have designed an model of the cortico-basal-ganglia 
circuit’s maintenance of tempo during sensorimotor 
synchronization, including a dopaminergic link between 
reward prediction error and action switching.

 Our model replicates gradual changes to small tempo 
shifts, and instantaneous changes to large shifts.[11]

 Also demonstrated is increased tap interval variability 
with decreased dopamine, as seen in PD patients.[3,4]

 Model could be generalized to describe interaction of 
sensorimotor error and other continuously encoded 
movement parameters.

Figure 2: Network behaviour in response to tempo changes. Note that adaptation to small changes is 
gradual, while adaptation to large changes is sudden. i) Activations of all units in specific layers across 
simulation. ii) Inter-tap intervals produced across the simulations. iii) Mean inter-tap intervals of human 
subjects adapting to tempo changes in a sensorimotor synchronization task (reproduced from [11]). 

Large tempo adjustments (500 ms to 550 ms) occur instantaneously.
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Figure 1: Simplified architecture of the basal 
ganglia[6]. Layers represent the cortex (Ctx), 
striatum (Str) sub-thalamic nucleus (Stn), 
global pallidus (GP), substantia nigra (SN), 
and thalamus (Tha).
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